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Abstract

Human trust plays an important role in influencing operator’s strategies toward the use of automated systems.

Therefore, a study was conducted to measure the effect of human trust in a hybrid inspection system given different

types of errors (i.e., false alarms and misses). The study also looked at which of the four dimensions of trust

(competence, predictability, reliability and faith) were the best predictors of overall trust. Results from the study reveal

that trust is sensitive to the type of errors made by a system and suggest that subjective ratings of trust and the

properties of the system can be used to predict the allocation of functions in hybrid inspection systems.
Relevance to industry
The study conducted here is applicable to inspection tasks in manufacturing and service industries. The results

obtained indicate that subjective ratings of operators’ trust can be used as a basis for predicting and optimizing

operator’s allocation behavior and system performance. Furthermore, designers can use these results to help decide

which functions to allocate to the human or to the system based on previous experiences and interaction with the

system.
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1. Introduction

Customer awareness regarding product quality
and increased incidences of product liability
litigation has increased the importance of the
inspection process in manufacturing industries
d.
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(Thapa et al., 1996). To remain competitive,
manufacturers can accept only extremely low
defect rates, often measured in parts per million.
This situation requires almost perfect inspection
performance in the search for nonconformities in a
product, and the two functions central to inspec-
tion, visual search and decision making, have been
shown to be the primary determinants of inspec-
tion performance (Sinclair, 1984; Drury, 1992).
However, while the need for error-free detection is
important, the inspection process tends to be less
than 100% reliable, especially when human
inspectors are used (Drury, 1992). As a result,
many companies are moving toward automated
inspection systems (Thapa et al., 1996). Even
though these automated systems have well-docu-
mented advantages, they cannot surpass the innate
ability of humans to recognize patterns, make
rational decisions, and quickly adapt to new
situations (Hou et al., 1993; Gramopadhye et al.,
1997). It is possible, though, that superior perfor-
mance could be achieved with a hybrid system, one
in which automation complements human
strengths. One challenge in designing such an
inspection system is determining how best to
allocate functions between humans and machines,
an especially critical issue since research has shown
that proper function allocation has the potential to
lead to improvement in inspection performance
(Bullinger and Salvendy, 1987; Sharit and Elhence,
1987; Morris et al., 1988; Sinclair, 1993; Jiang
et al., 2004). In response to this need, Hou et al.
(1993) proposed the seven alternate hybrid inspec-
tion systems listed in Table 1 with Alternative
Table 1

Allocation alternatives in hybrid inspection task (Hou et al., 1993)

Alternative Search

1 Human

2 Computer

3 Human

4 Computer

5 Human

6 Computer

7 Human+Computer

8 Human+Computer

9 Human+Computer
Seven, the most complicated and flexible, chosen
for use in the current study.
To measure system performance, traditional

measures of speed, accuracy were often used
(Hou et al., 1993). In addition to these, several
studies of supervisory control have confirmed that
trust in automation, a subjective measure, is a key
component in determining how to allocate func-
tions effectively (Muir and Moray, 1996; Lee and
Moray, 1992; Sheridan, 1980; Sheridan et al.,
1983a,b; Sheridan and Hennessy, 1984). Research
from both social science and engineering view-
points suggests that trust is a multidimensional
concept, reflecting a set of interrelated perceptions
such as the reliability or the predictability of an
entity, the behavior of the human involved, the
characteristics of the machine, and the interactions
between the operator and the system (Bisantz et al.,
2000; Parasuraman, 2000; Moray and Rodriguez,
2000).
The first step in gaining a better understanding

of how the characteristics of automation ulti-
mately affect human behavior and, as a
result, inspection performance, is to identify the
factors influencing trust. In the absence of
human/machine models of how trust evolves,
models between people have been used as a basis.
Muir (1994) was one of the first to develop
such a model using this approach. He attempted
to capture the multi-dimensional construct of
trust by incorporating dimensions that evolved
from two models of trust between humans:
Barber’s (1983) model and Rempel et al. (1985)
model.
Decision-making System mode

Human Human

Computer Computer

Computer Hybrid

Human Hybrid

Human+Computer Hybrid

Human+Computer Hybrid

Human Hybrid

Computer Hybrid

Human+Computer Hybrid
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Barber (1983) defined trust in terms of a
taxonomy incorporating three expectations: per-
sistence, technical competence, and fiduciary
responsibility, with only the first two applicable
to machine–human relationships. For him, persis-
tence, the foundation for trust, was established by
an expectation of constancy. In adapting this
construct to automation, Muir (1994) proposed
that constancy is what allows humans to predict
the future state of a system while the expectation
of technical competence, what humans probably
most easily understand as the meaning of trust in
machines, is the proper execution of a specific task.
In addition to these two dimensions proposed

by Barber (1983), Muir (1994) incorporated three
from Rempel et al. (1985), whose model consists of
a hierarchy with trust at any one stage based on
the outcome of the earlier one. Using Rempel
et al.’s three components of predictability, depend-
ability and faith, Muir proposed that, similar to
the development of trust between people, humans
begin to develop trust in a machine by determining
its predictability, i.e., by evaluating the consistency
and desirability of its repeated behavior over a
given period of time. As the relationship pro-
gresses, this predictability leads to dependability,
the second stage in the hierarchy. The develop-
ment of faith, which according to Rempel et al.
requires the taking account past experiences based
on predictability and dependability, occurs over
time, suggesting humans develop faith only after
working with a machine for significant amount of
time.
By integrating Barber’s and Rempel et al.’s

model to include the dimensions of persistence,
technical competence, predictability, dependability
and faith, Muir (1994) was able to establish a more
comprehensive model of the development of
human trust in automation. The model was later
reduced to the four dimensions of trust found to be
applicable to hybrid inspection systems (Master
et al., 2000).
In addition to understanding the relationship

between trust and its dimensions, it is equally
important to be able to measure these effectively.
Previous research has investigated various meth-
ods for measuring trust, primarily utilizing rating
scales in questionnaires (Muir and Moray, 1996;
Singh et al., 1993). However, the applicability of
the results obtained from these early question-
naires is limited because some measured trust in a
particular person while others were general in
nature (Bisantz et al., 2000). Furthermore, they
were based on theoretical notions of trust rather
than empirical analysis. In response to these
limitations, Jian et al. (2000) developed an
empirically determined scale for measuring trust
in automated systems to understand better the
similarities and differences in the concepts of trust.
While an improvement, it was based on the
measurement of trust in any general automated
system and, as a result, is not completely applic-
able to hybrid inspection systems. Consequently, a
new questionnaire was developed to determine the
effects of the level of trust an operator has in
hybrid inspection systems for administration for
the current study (Master et al., 2000). This
questionnaire incorporated the four dimensions
of trust—competence, predictability, reliability
and faith—derived from the multidimensional
construct developed by Muir (Master et al.,
2000) to determine the best predictors of trust,
the first objective of this study, with the ques-
tionnaire developed by Jian et al. (2000) being used
to validate the questions common to both ques-
tionnaires.
The main objective of this paper was to measure

the effects of human trust in a hybrid inspection
system. As Muir and Moray (1996) discovered in
their study of nine pumps, operator trust is
affected by accuracy, i.e. the type and number of
errors made by the system. Therefore, using the
signal detection theory classification of systems as
conservative, risky, or neutral (Swets, 1964; Green
and Swets, 1966), this study measured the effects
of misses, and false alarms on human trust of
automation in a hybrid inspection system. The
study also looked at which of the four dimensions
of trust (competence, predictability, reliability and
faith) were the best predictors of overall trust.
Section 2 of this paper describes the methodol-

ogy used to achieve the two objectives of this
study, detailing the participants, the stimulus
material, the inspection task, the experimental
design, the procedure, and the data collection.
Section 3 presents the results concerning the effect
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of system error (false alarms and misses) on
human trust of automation as well as the
dimensions and predictors of trust, while
Section 4 discusses these findings and offers
conclusions.
2. Methodology

2.1. Subjects

The subjects were 6 students, both graduate and
undergraduate, enrolled at Clemson University
between the ages of 18 and 28. Students can be
used as subjects in lieu of inspectors because as
Gallwey and Drury (1986) have shown, minimal
differences exist between inspectors and student
subjects on simulated tasks. The subjects were
screened for 20/20 vision, corrected if necessary,
and paid $5.00/h for their time.
Table 2

Illustrations of defects
2.2. Stimulus material

The task was a simulated visual inspection of a
printed circuit board implemented on a Pentium
III computer with a 1900 high-resolution ð1024�
768Þ monitor. The input devices were a Microsoft
standard keyboard and a Microsoft one-button
mouse. The task consisted of inspecting simulated
PCB images developed using Adobe PhotoShop
5.5 for six categories of defects seen in Table 2—
missing components, wrong components, inverted
components and misaligned components, trace
defects and board defects. Four categories of
defects could occur on any of these four individual
components: resistors, capacitors, transistors and
integrated circuit.

2.3. Inspection systems

Humanþcomputer search/humanþcomputer de-

cision-making hybrid inspection system: In this
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system, both computers and humans searched for
defects and made the decision on the board with
the human having the final decision about whether
to accept or override the computer search or
decision-making (Jiang et al., 2002, 2003). During
visual search, PCB boards containing 1, 2, 3, or no
defects were presented to the subjects, whose task
was to locate all potential defects and name them.
After locating the defect, they clicked the mouse
on it and chose its name from a dropdown box
listing all possible defects. At the same time, the
computer performed the same search task. How-
ever, subjects could override the computer if they
did not agree with its search results. Then, the
computer made its conformance decision and the
subjects made their final conformance decisions,
either agreeing or disagreeing with the computer.
Once the board was classified, the image of the
next board would be presented to the subjects.
Each inspection task consisted of 48 randomly
ordered PCB boards—12 of each zero-defect,
single-defect, two-defect, and three-defect boards.
Table 3 provides detailed information about the
boards while Fig. 1 shows a typical decision-
Table 3

Details of selected PCB boards

Board type Number of boards Defect type

Conforming boards 12 None

Single-defect boards 2 Missing component

2 Wrong component

2 Inverted component

2 Misaligned component

2 Board defect

1 Copper overlay

1 Soldering joint

Two-defect boards 2 Missing component and

2 Missing component and

2 Wrong component and m

2 Missing component and

2 Misaligned component a

2 Inverted component and

Three-defect boards 3 2 wrong components and

3 1 each missing componen

3 1 each board defect com

3 1 each wrong componen
making response by the computer and the human
inspector’s decision to override this decision.

2.4. Experimental design

This study used a single factor (response bias)
within subject design. The three levels of the
response bias were conservative (high false alarms/
low misses), neutral (equal false alarms and
misses), and risky (high misses/low false alarms).
Table 4 shows the layout of the design. Two Latin
squares with different orders were used to cancel
out the order effects (see Table 5). All treatments
were randomly assigned to the three Latin letters.

2.5. Procedure

The study took place over a 7-day period. Day
one was devoted to training the subjects and
during the next 6 days, data were collected on the
criterion tasks. A more detailed explanation of the
activities conducted on each day can be seen
below.
wrong component

misaligned component

isaligned component

copper overlay

nd board defect

wrong component

1 misaligned component

t, wrong component and misaligned component

ponent, copper overlay component, and misaligned component

t, inverted component, and wrong component
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Fig. 1. Screenshot from Hybrid Inspection System VII.

Table 4

Layout of the design

Hybrid inspection system

Conservative Neutral Risky

Subject 1

|

Subject 6

Table 5

Latin square design

 Subjects 

1 2 3 4 5 6

1 C B A
2 A C B
3 C   AB
4    B C A
5    C A B

Sequence of experimental conditions 

6    A B C

X. Jiang et al. / International Journal of Industrial Ergonomics 34 (2004) 407–419412
On Day one, each subject was required to
complete a consent form and a demographics
questionnaire. Following this step, instructions
were read to the subjects to ensure their under-
standing of the experiment. Next, all were trained
and given three separate tests before beginning the
experiment.
A typical training session proceeded as follows:

1. Initial overview: Initially, the subjects were
introduced to basic PCB inspection terminology
and familiarized with the computer program.
Following this step, subjects were quizzed on
their knowledge of the operation of the soft-
ware, and correct answers were supplied for
incorrect responses.

2. Defect training: The subjects were initially
trained to recognize different types of defects
by being shown instances of each, including
name and probable locations. Then, training
was provided on the guidelines used to classify
the PCB board as conforming or nonconform-
ing.
After completion of defect training, the

subjects underwent training sessions on defect
matching, single defect inspection and multiple-
defect training. Following each session, the
subjects were administered a test. Only those
subjects who secured a minimum score were
allowed to proceed to the next step.
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3. Defect matching: PCBs with a marked single
defect were displayed on the screen, and
subjects classified it by choosing the correct
name from a dropdown box. They were
provided with immediate feedback about the
correctness of their responses.

4. Single-defect training: PCBs with a single defect
were displayed on the screen, and subjects located
and then classified it by choosing the name from a
dropdown box. They were provided with im-
mediate feedback on their search performance
using speed and accuracy measures.

5. Multiple-defect training: PCBs with 1, 2 or 3
defects were displayed on the screen, and
subjects first visually searched for and then
classified them. They were provided with
immediate feedback on their performance using
speed and accuracy measures.

On Day two, to develop a baseline of a subject’s
trust of the system, each was administered a
criterion task with 24 PCB boards to inspect using
a perfect hybrid inspection system, i.e., a system
did not make any errors.
On Day three, subjects were required to fill out a

trust questionnaires at three different times. At the
first stage, they were required to complete a
generic trust questionnaire (Jian et al., 2000) and
a trust questionnaire developed by Master et al.
(2000) to measure initial trust before they began
the experiment. Following this step, they were
administered one trial block of 48 PCB boards
based on one of the three treatments. In stage two,
the subjects were asked to complete the same two
trust questionnaires after they finished 24 boards
of each trial block. In stage three, they were
required to complete another set of the same
questionnaires after they finished the inspection
task. From Day four to Day seven, the subjects
followed the same procedure and were assigned
the other two experimental conditions. On com-
pletion of the study, each subject was debriefed.
Correlation analysis for the two questionnaires

Correlation ðr2Þ p

Stage one 0.97 o0.001

Stage two 0.975 o0.0001

Stage three 0.98 o0.001
3. Results

The results from the hybrid inspection trust
questionnaire were first compared with those from
the generic questionnaire using correlation analy-
sis. Then, they were analyzed using the mixed
model analysis of covariance to analyze the effect
of the system response bias on trust measurement
at stage two, after the subjects finished 24 boards,
and at stage three, on completion of the inspection
task. Finally, stepwise regression analysis was used
to select the best predictors of overall trust at each
of three stages as well as the change in the trust for
the three inspection systems.

3.1. Correlation analysis

Since the generic questionnaire developed by
Jian et al. (2000) has been validated, a correlation
analysis was conducted on the two trust ques-
tionnaires for all three stages to validate the hybrid
inspection trust questionnaire as shown in Table 6.
As this analysis shows, the hybrid inspection

questionnaire used in this study has a very high
correlation with the generic questionnaire, indicat-
ing that the hybrid inspection questionnaire has
been validated.

3.2. Analysis of covariance for the trust

3.2.1. Stage two-after 24 PCB boards

Overall: As illustrated in Fig. 2, the analysis of
covariance of overall trust indicated a significant
treatment effect ðF ð2; 27Þ ¼ 7:71; po0:01Þ: The
results of Student–Neuman–Keuls procedure are
summarized in Table 7. Treatments underlined by
a common line do not differ from one another
while treatments not underlined by a common line
do. As shown in Table 7, the overall trust of the
risky system is significantly lower than the neutral
system and the conservative system while the latter
two are not significantly different.
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Fig. 2. Trust at stage two.

Table 7

Results of Student–Neuman–Keuls procedure for three inspection systems

Stage Component Tests on all ordered pairs of means

2 Overall trust Risky Neutral Conservative

Competency Risky
Neutral Conservative

Reliability Risky
Neutral Conservative

Predictability Risky Neutral Conservative

Faith Risky Neutral Conservative

3 Overall trust Risky Neutral Conservative

Competency Risky
Neutral Conservative

Reliability Risky
Neutral Conservative

Predictability Risky
Neutral Conservative

Faith Risky
Neutral Conservative

Risky
Neutral Conservative

X. Jiang et al. / International Journal of Industrial Ergonomics 34 (2004) 407–419414
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Competency: As illustrated in Fig. 2, the analysis
of covariance of competency indicated a signifi-
cant treatment effect ðF ð2; 27Þ ¼ 7:16; po0:01Þ:
The results of Student–Neuman–Keuls
procedure summarized in Table 7 showed that
competency of the risky system is significantly
lower than the neutral system and the conservative
system while the latter two are not significantly
different.

Reliability: As illustrated in Fig. 2, the analysis
of covariance of reliability indicated a significant
treatment effect ðF ð2; 27Þ ¼ 7:16; po0:01Þ: The
results of Student–Neuman–Keuls procedure sum-
marized in Table 7 showed that reliability of the
risky system is significantly lower than the neutral
system and the conservative system while the latter
two are not significantly different.

Predictability: As illustrated in Fig. 2, the
analysis of covariance of predictability indicated
a significant treatment effect ðF ð2; 27Þ ¼
5:10; po0:05Þ: The results of Student–Neuman–
Keuls procedure summarized in Table 7 showed
that predictability of the risky system is signifi-
cantly lower than the conservative system while it
is not significantly different from the neutral
system.

Faith: As illustrated in Fig. 2, the analysis of
covariance of faith indicated a significant treat-
66
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Risky Neutr

Fig. 3. Trust at s
ment effect ðF ð2; 27Þ ¼ 8:64; po0:01Þ: The results
of Student–Neuman–Keuls procedure summarized
in Table 7 showed that faith of the risky system is
significantly lower than the conservative system
while it is not significantly different from the
neutral system.

3.2.2. Stage three-after 48 PCB boards

Overall: As illustrated in Fig. 3, the analysis of
covariance of overall trust indicated a significant
treatment effect ðF ð2; 27Þ ¼ 8:87; po0:01Þ: The
results of Student–Neuman–Keuls procedure sum-
marized in Table 7 showed that overall trust of the
conservative system is significantly higher than the
neutral system and the risky system while the latter
two are not significantly different.

Competency: As illustrated in Fig. 3, the analysis
of covariance of competency indicated a signifi-
cant treatment effect ðF ð2; 27Þ ¼ 8:48; po0:01Þ:
The results of Student–Neuman–Keuls
procedure summarized in Table 7 showed that
competency of the risky system is significantly
lower than the neutral system and the risky
system while the latter two are not significantly
different.

Reliability: As illustrated in Fig. 3, the analysis
of covariance of overall trust indicated a signifi-
cant treatment effect ðF ð2; 27Þ ¼ 7:54; po0:01Þ:
ability Predictability Faith

mponent

al Conservative

tage three.
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The results of Student–Neuman–Keuls proce-
dure summarized in Table 7 showed that reliability
of the risky system is significantly lower than the
neutral system and the risky system while the latter
two are not significantly different.

Predictability: As illustrated in Fig. 3, the
analysis of covariance of predictability indi-
cated a significant treatment effect ðF ð2; 27Þ ¼
6:48; po0:01Þ: The results of Student–Neuman–
Keuls procedure summarized in Table 7 showed
that predictability of the risky system is signifi-
cantly lower than the neutral system and the
risky system while the latter two are not signifi-
cantly different.
Table 8

Stepwise regression analysis for the risky system

Initial trust (stage one) Middle trust (stage t

R2 0.9880 0.9994

CðPÞ 1.2964 1.5793

Best predictors Faith Reliability and pred

ModelðTÞ
Competency

Reliability 0.9395

Predictability 0.0567

Faith 0.9804

Intercept 2.002 0.1966

F 330.07 2602.47

p o0.0001 o0.0001

Table 9

Stepwise regression analysis for the neutral system

Initial trust (stage one) Middle trust (stage t

R2 0.9685 0.9994

CðPÞ 184.5293 1.5793

Best predictors Competence Reliability and pred

ModelðTÞ
Competency 1.3984

Reliability 0.4441

Predictability

Faith 0.7475

Intercept �32.35 �12.4511
F 123.14 137.68

P o0.01 o0.01
Faith: As illustrated in Fig. 3, the analysis of
covariance of faith indicated a significant
treatment effect ðF ð2; 27Þ ¼ 9:09; po0:01Þ: The
results of Student–Neuman–Keuls procedure sum-
marized in Table 7 showed that faith of the risky
system is significantly lower than that of the
neutral system and that of the risky system while
the latter two are not significantly different.

3.3. Stepwise regression model analysis

The stepwise regression procedure was used to
analyze trust model and to find out the best
wo) Final trust (stage three) Change in trust

0.9843 0.9661

1.4765 1.1823

ictability Faith and reliability Faith and reliability

�0.0829 �0.1055

1.073 1.3480

1.9487 1.165

94.21 42.74

o0.01 o0.01

wo) Final trust (stage three) Change in trust

0.9843 0.9661

1.4765 1.1823

ictability Faith and reliability Faith and reliability

3.6944

0.5066

�2.4349 0.6185

18.008 �3.0809
60.35 242.62

o0.05 o0.0001
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Table 10

Stepwise regression analysis for the conservative system

Initial trust (stage one) Middle trust (stage two) Final trust (stage three) Change in trust

R2 0.9803 0.9994 0.9843 0.9661

CðPÞ 1.2228 1.5793 1.4765 1.1823

Best predictors Faith Reliability Faith and reliability Faith and competency

ModelðTÞ
Competency 1.3984 �0.6896
Reliability 1.2795 1.4508

Predictability

Faith 1.1256 0.3052 1.5489

Intercept 11.4861 18.233 �54.6064 1.165

F 198.91 21.24 164.23 55.12

p o0.001 o0.05 o0.01 o0.01
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predictors at each of three stages as well as the
change in the trust for the three inspection
systems. Results are reported in Tables 8–10.
4. Discussion and conclusions

The most salient finding of this research is that
measuring trust in a hybrid inspection environ-
ment is feasible and that the trust questionnaire is
sensitive to different inspection systems.
At stage two, it was found that the overall trust

in the risky system was significantly lower than
that of the other two systems while no significant
difference was found between those two systems.
This may have been a result of the percentage of
the types of errors made by each system; for
example, the risky system had a high percentage of
false alarms and a low percentage of misses. Since
false alarms made by the system are commissive
errors, which the subjects cannot overlook if they
are paying attention, whereas misses are omissive
errors which the subjects are likely to miss if
they are not paying attention (Sanders and
McCormick, 1993), people’s overall trust of a
computer with a risky bias may be affected
more than it would be for computers with a
conservative or neutral bias. Furthermore, since a
neutral system makes only slightly more false
alarms than a conservative system, it may not be
able to draw an operator’s attention and, there-
fore, no significant difference is reflected in the
trust of the systems. The same pattern was
revealed from the analysis of covariance at
stage two for two of the four dimensions of the
trust: competency, which is ‘‘the extent to
which the system performs the task effectively’’
(Master et al., 2000), and reliability, which is ‘‘the
extent to which the system is free of errors’’
(Master et al., 2000).
On the other hand, the analyses for the other

two dimensions, predictability and faith, gave a
different pattern. Although it remained true that
the trust of the neutral system and the conservative
system were statistically the same, no significant
difference was found between the trust of a risky
system and that of a neutral system. Probably
because predictability and faith are more sensitive
to system errors, a slight change in the error rate
may have some effect on the trust in the system.
Furthermore, at stage two, subjects probably did
not have a clear sense of the slight difference
between a risky system and a neutral system or a
neutral system and a conservative system. As a
result, although predictability and faith in a risky
system were significantly lower than those in a
conservative system, there is no significant differ-
ence between them in both a risky system and a
neutral system, or in a conservative system and a
neutral system.
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At stage three, it was found that the overall trust
as well as the four dimensions of the trust in the
risky system was significantly different in the other
two systems while no significant difference was
found among them in the latter two systems. The
difference between stages two and three is that
predictability and faith also follow the same
pattern as the other dimensions as well as overall
trust in stage three. One possible reason is that
subjects became more aware of the difference in
the risky and the neutral systems at stage three
and, therefore, rated them more differently than
they did at stage two. As a result, trust of the risky
system is significantly different from that of the
neutral system.
Results from the stepwise regression analysis

conducted at three stages for the three inspection
systems revealed that a linear regression model
could be used to predict operator’s trust of a
hybrid inspection system. For example, faith and
reliability are the best predictors for all three
systems at stage three.
When looking at the subject’s ratings of overall

trust, it was seen that there was a high degree of
variability between each subject’s rating of trust.
This shows that trust is subjectively based on the
characteristics of the operator. To understand
better how trust is affected by system errors,
individual differences resulting from the different
types of human behavior need to be taken into
account.
Another reason for the variance in trust between

subjects was probably because none of the subjects
had been exposed to this type of system, even
though each subject was trained to use it prior to
starting the study. Since subjects probably based
their initial trust on past experiences encountered
with similar systems, it can be hypothesized that
operators need to be experienced users of the
system in order to be able to elicit without much
variability.
These results show that operators’ subjective

ratings of trust can provide insight into their
relationship with the system and can be used as a
basis for predicting and optimizing allocation
behavior and system performance. They are help-
ful for both designers and researchers. Designers
of automation can use them to help decide which
functions to allocate to the human or to the system
based on previous experience and interaction with
the system. Researchers can use them to perform
the field studies needed to validate laboratory
results to understand further human trust in
automation.
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